

1.54inch E-Paper RBW

Product Specifications

Customer	Standard
Description	1.54 E-paper Display
Model Name	1.54inch E-Paper RBW
Date	2023/09/18
Revision	1.0

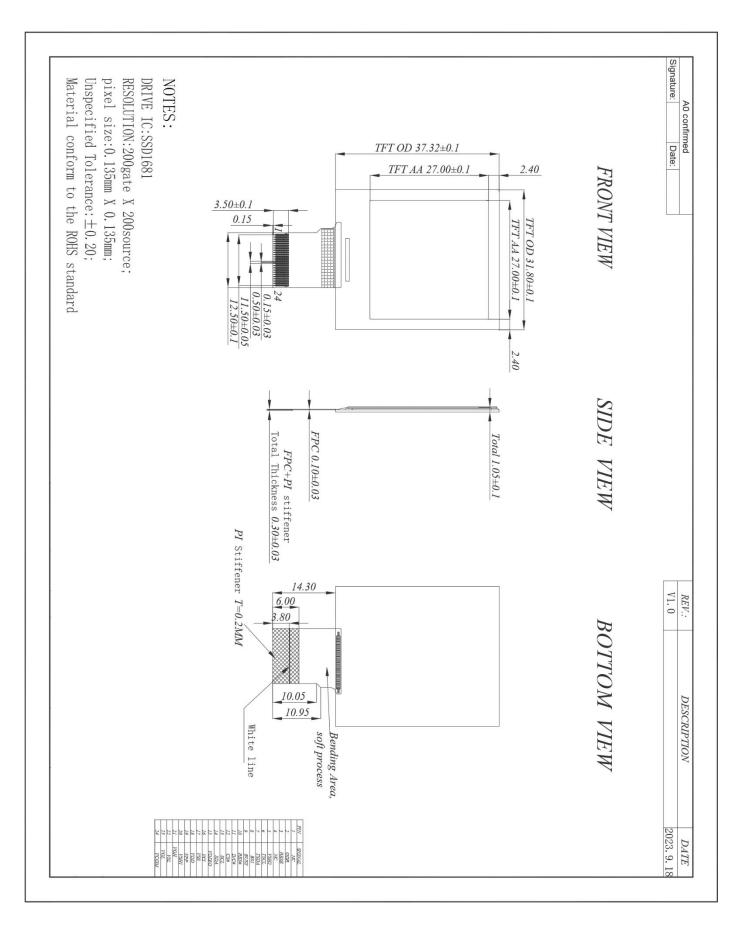
Table of contents

1. General Description	1
1.1 Over View	1
1.2 Features	1
1.3 Mechanical Specifications	1
1.4 Mechanical Drawing of EPD module	2
1.5 Reference Circuit	3
1.6 Input/Output Pin Assignment	4
2. COMMAND TABLE	5
3. Environmental	17
3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS	17
3.2 Reliability test	18
4. Electrical Characteristics	19
4.1 ABSOLUTE MAXIMUM RATING	19
4.2 DC CHARACTERISTICS	19
4.3 Serial Peripheral Interface Timing	20
4.4 Power Consumption	21
4.5 MCU Interface	21
4.5-1 MCU interface selection	21
4.5-2 MCU Serial Peripheral Interface (4-wire SPI)	21
4.5-3 MCU Serial Peripheral Interface (3-wire SPI)	22
5. Typical Operating Sequence	24
5.1 General operation flow to drive display panel	24
6. Optical characteristics	25
6.1 Specifications	25
7. Point and line standard	25
8. Precautions	26

1. General Description

1.1 Over View

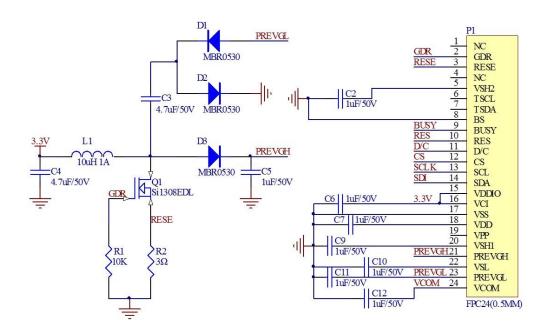
1.54inch e-Paper RBW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit Black/White and highlight Red full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.


1. 2 Features

- ■200×200 pixels display
- High contrast
- ■High reflectance
- Ultra wide viewing angle
- ■Ultra low power consumption
- ■Pure reflective mode
- ■Bi-stable display
- ■Commercial temperature range
- ■Landscape, portrait modes
- Hard-coat antiglare display surface
- ■Ultra Low current deep sleep mode
- ■On chip display RAM
- ■Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ■12C signal master interface to read external temperature sensor/built-in temperature sensor
- ■available in COG package IC thickness 300um

1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	27.00 (H)×27.00 (V)	mm	
Pixel Pitch	0.135×0.135	mm	
Pixel Configuration	Square		
Outline Dimension	37.32(H)×31.80(V) ×0.98(D)	mm	
Weight	2.18±0.5	g	



1.4 Mechanical Drawing of EPD module

1.5 Reference Circuit

Note:

- 1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
- 2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
- 3. The default circuit is 4-wire SPI.
- 4. Default voltage value of all capacitors is 50 V.

1.6 Input/Output Pin Assignment

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES#	Reset	Note 1.5-3
11	D/C#	Data /Command control pin	Note 1.5-2
12	CS#	Chip Select input pin	Note 1.5-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 1.5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 1.5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

2. COMMAND TABLE

Command Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on				
0	0	01	0	0	0	0	0	0	0	1	Driver Output control						
0	1		A ₇	As	A ₅	A4	A ₃	A ₂	Aı	Ao				, 200 MUX			
0	1		0	0	0	0	0	0	0	A ₈		MUX Gate lines setting as (A[8:0] +		[8:0] + 1).			
0	1		0	0	0	0	0	B ₂	Bı	Bo		B(3-0) = 0	UU IBUB	ř			
•	- 1		, ×	"	•	*		0.	-	"		B[2:0] = 000 [POR]. Gate scanning sequence and direction					
												B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0,G1, G2, G3, GD=1, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver. SM=0 [POR], G0, G1, G2, G3199 (left and right gate interlaced) SM=1, G0, G2, G4G198, G1, G3,G199 B[0]: TB TB = 0 [POR], scan from G0 to G199 TB = 1, scan from G199 to G0.					
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate	driving ve	ltage			
0	1	00	0	0	0	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0	Oh [POR		,		
							-					A[4:0]	VGH	A[4:0]	VGH		
												00h	20	0Dh	15		
												03h	10	0Eh	15.5		
												04h	10.5	0Fh	16		
												05h	11	10h	16.5		
												06h	11.5	11h	17		
												07h	12	12h	17.5		
												08h	12.5	13h	18		
												07h	12	14h	18.5		
												08h	12.5	15h	19		
												09h	13	16h	19.5		
												0Ah	13.5	17h	20		
												0Bh	14	Other	NA		
					0Ch	14.5											

Com	Command Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage		
0	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control		A[7:0] = 41h [POR], VSH1 at 15V	
0	1		B ₇	Be	Bo	B ₄	B ₃	B ₂	B ₁	Bo		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		Remark: VSH1>=VSH2		
A17	/D[7]	- 1	_			_		1.0	71/01	71 - 0	1	C[7] = 0		

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	85h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6.5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3,8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
Ath:	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	5.4
AAh	5.2	CBh	8.5
ABh	5.3	OCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA.

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
28h	10.6	44h	15,6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33h	12.2	Other	NA
34h	12.4		-
35h	12.6		
36h	12.8		
37h	13		
38h	13.2		
39h	13.4		
3Ah	13.6		
38h	13.8		

C[7] = 0, VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1		Write Register for Initial Code Setting
0	1		A ₇	Ав	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	A[7:0] ~ D[7:0]: Reserved Details refer to Application N	
0	1		B ₇	Be	Bo	B ₄	B ₃	B ₂	B ₁	Bo		
0	1		C7	C ₆	C ₅	C4	Сз	C ₂	C ₁	Co		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting

_	man	-	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		able with Phase 1, Phase 2 and Phas
0	1	00	1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control		current and duration setting.
		_	110	-		-	-	-	-	-	5.00000000	A[7:0] -> So	oft start setting for Phase1
0	1	-	1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	=	8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	-	C ₀	-		oft start setting for Phase2 9Ch [POR]
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> So	oft start setting for Phase3
													96h [POR] uration setting
									-				0Fh [POR]
												Bit De A[6:0]	escription of each byte: / B[6:0] / C[6:0]:
												Bit[6:4	Driving Strength
												000	1 Selection 1(Weakest)
												000	2
- 1												010	3
												010	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												3.13	o(Strongest)
												Bit[3:0	Min Off Time Setting of GDR [Time unit]
												0000	
- 1												0011	NA
												0100	
												0101	3.2
												0110	3.9
-1												0111	4.6
												1000	5.4
-1												1001	6.3
-1												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4 D[3:2	duration setting of phase 3: duration setting of phase 3: duration setting of phase 2: duration setting of phase 1: Duration of Phase
												00	[Approximation] 10ms
												01	20ms
												10	20ms 30ms
												10	30ms 40ms
				L			_						1015000
0	0	10	0	0	0	1	0	0	0	manufactured to the same of	Deep Sleep mode	Deep Slee	ep mode Control:
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]:	Description Normal Mode [POR]
												01	Enter Deep Sleep Mode 1
												11	Enter Deep Sleep Mode 2
													command initiated, the chip w
												enter Dee keep outp Remark: To Exit De	p Sleep Mode, BUSY pad will

	man	(Arteintenberg)	Commission of the later of	De	D.F.		-	-	-	-		In
100000	D/C#	2000000	-	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	As	As	A ₄	0	A2	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will b completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	15	0	0	0	0	0	A ₂	A ₁	Ao	VCI Detection	A[2:0] = 100 [POR], Detect level at 2.3V
												A[2:0] : VCI level Detect A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	As	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A11	A10	Ao	As	A7	As	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1	-	A11	A ₁₀	Ag	Aa	A7	As	A5	A4	Control (Read from	
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output
												high. Note: RAM are unaffected by this command.

	man D/C#	-		D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	10	0	0				-	_	0	T	144-14- 0	-1. 5.111	
0	0	1C	0 A ₇	0 Α ₆	0 A ₅	1 Aı	1 A ₃	1 A ₂	0 A ₁	O Ao	Temperature Sensor Control (Write Command	sensor.	and to External temperature	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Ct	Co	sensor)	B[7:0] = 00h C[7:0] = 00h		
			O,	00	05	0.	03	02	01	00		C[7.0] - 00H	(POR),	
												A[7:6]		
													ct no of byte to be sent ess + pointer	
													ess + pointer + 1st parameter ess + pointer + 1st parameter +	
												10 2nd ;	pointer	
											1 - 1 - 1 - 1 - 1 - 1 - 1	11 Addr A[5:0] – Poin		
												B[7:0] - 1st pa	arameter	
												C[7:0] - 2 nd p		
													d required CLKEN=1. ister 0x22 for detail.	
													nmand initiated, Write	
												Command to	external temperature sensor pad will output high during	
3		- 3				8	a .			2		operation.	pad will output riigh during	
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Disp	lay Update Sequence	
												The Display U located at R2	Jpdate Sequence Option is 2h.	
												BUSY nad wi	Il output high during	
												operation. Us	er should not interrupt this	
												C. Prince Living	void corruption of panel	
												images.		
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content	option for Display Update	
0	1		A7	A ₆	A ₅	As	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h[POR]	
30.00				(5000017)				-50000	200000	80080		B[7:0] = 00h [PORJ	
											l iliniii	A[7:4] Red R/	AM option	
												0000	Normal	
												0100 1000	Bypass RAM content as 0 Inverse RAM content	
												A[3:0] BW RA		
												0000	Normal Bypass RAM content as 0	
												1000	Inverse RAM content	
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data e A[2:0] = 011	entry sequence	
U	1		U	U	0	U	0	A ₂	Aı	Ao				
												A [1:0] = ID[1 Address auto	:uj matic increment / decremen	
												setting	f incrementing or	
													of the address counter can	
												be made inde lower bit of th	ependently in each upper an	
												00 -Y decrer	nent, X decrement,	
												10 -Y increm	nent, X increment, nent, X decrement, nent, X increment [POR]	
												A[2] = AM		
												Set the direct counter is up	tion in which the address dated automatically after dat	
												are written to		
												Least of the C	duless counter is upuated in	
											:=:=!!!!	AM= 0, the address counter is upd the X direction. [POR] AM = 1, the address counter is up		

	man D/C#		_	D6	D5	D4	D3	D2	D1	DO	Command	Description	
2000	-	000000	1000		7.7		-20	1.000	1500	-		Description	
0	1	22	0 A ₇	0 A ₆	1 A ₅	0 A4	0 A ₃	0 A ₂	1 A ₁	O Ao	Display Update Control 2	Display Update Sequence Opt Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
							TO 18						C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 1 Disable Analog Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly For Write pixel: Content of Write RAM(BW) =	another pointers will
0	0	24	0	0	1	0	0	1	0	0		written into the BV command is written advance according For Write pixel:	W RAM until a en. Address p igly RAM(BW) =

	man	-				1.00	L		1 10 10 10 10 10 10 10 10 10 10 10 10 10	1	THE STATE OF THE S	Indiana de la constante de la
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel:
												Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
- 8	, ,											The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	25	0	1	0	0	A ₃	A2	A ₁	Ao	VOOM Serise Duration	sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	20	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1	133	0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.

-	man	-	and the local division in the local division			42		200	-		I-						
UW#	D/C#	30.35	-	D6	D5	D4	D3	D2	D1	D0	Command		The same of the sa				
0	1	2C	0 A ₇	0 A ₆	1 A ₅	O Aı	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist 00h [POR]		ICU interfac		
												A[7:0]	VCOM	A[7:0]	VCOM		
												08h	-0.2	44h	-1.7		
												0Ch	-0.3	48h	-1.8		
												10h	-0.4	4Ch	-1.9		
												14h	-0.5	50h	-2		
												18h	-0.6	54h	-2.1		
												1Ch	-0.7	58h	-2.2		
												20h	-0.8	5Ch	-2.3		
												24h	-0.9	60h	-2.4		
												28h	-1	64h	-2.5		
												2Ch	-1.1	68h	-2.6		
												30h -1.2 34h -1.3 38h -1.4 3Ch -1.5		6Ch	-2.7		
												34h	-1.3	70h	-2.8		
												38h	-1.4	74h	-2.9		
													78h	-3			
												40h	-1.6	Other	NA		
1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1		A7 B7 C7 D7 E7 F7 G7 H7 J7	A6 B6 C6 D6 E6 F6 G6 H6 J6	A ₅ B ₅ C ₅ D ₅ E ₅ F ₀ G ₀ H ₅ I ₅ K ₅	A ₄ B ₄ C ₄ D ₄ E ₄ F ₄ G ₄ H ₄ I ₄ J ₄	A ₃ B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	A ₂ B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	A ₁ B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁ I ₁ J ₁ K ₁	A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ H ₀ I ₀ K ₀	Display Option	Read Register for Display Option: A[7:0]: VCOM OTP Selection (Command 0x37, Byte A) B[7:0]: VCOM Register (Command 0x2C) C[7:0]~G[7:0]: Display Mode (Command 0x37, Byte B to Byte F) [5 bytes] H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J) [4 bytes]					
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	ed in OTP:		
1	1		A7	As	As	Aı	Aa	A ₂	At	Ao					Byte A and		
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bt	Bo	1	Byte J)	[10 bytes]				
1	1		C ₇	Ce	C ₅	C ₄	C ₃	C ₂	C ₁	Co							
-	-			-	-	-	_	-	_	_							
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀							
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀							
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀							
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go							
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H	Ho							
1	1		17	16	ls:	14	l ₃	12	1,	lo	1						
	1		J ₇	-		-			-								
1	4		1-	Je	J ₅	J ₄	Ja	J ₂	J ₁	Jo							

	man	-	-	-	0.5	-	-	no.		-	0	DI-II
	D/C#	1000		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1 As	0 A ₄	1 0	0	1 A ₁	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
_			_			_			_			respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of
0	1		A ₇	A ₆	Αs	A ₄	A ₃	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		and FR[n]
0	1		:							;		Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1681 application note.
												BUSY pad will output high during operation.
0	0	25	0	0	4	4	0	4	0	4	CDC Status David	CDC Status David
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A15		A ₁₃		A11	A ₁₀	Ag	Aa Ao		
1	-1		A7	As	A3	A4	Аз	A ₂	A ₁	70		

-	man D/C#		-	D6	D5	D4	D2	Da	D1	DO	Command	Description
2000	2000	20000		-	-	1000	D3	D2		D0	CONTRACTOR OF THE PROPERTY OF	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Penieter for Dieplay	Write Register for Display Option
0	1	31	A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1	-	B ₇	Be	B ₅	B ₄	Ba	B ₂	Bı	Bo		0: Default [POR]
0	1		C ₇	C ₆	Co	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1		D ₇	D ₆	Do	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	Eα	E ₃	E ₂	Eı	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	Fı	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	Ga	G ₂	Gı	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	He	H ₅	H ₄	Ha	H ₂	Hı	Ho		0: Display Mode 1
0	1		17	16	la	14	la	12	1,	lo		1: Display Mode 2
0	1		J ₇	Jo	J ₅	J ₄	J ₃	J ₂	Ji	Jo		F[6]: PingPong for Display Mode 2
	90			07484		Ricks	000	50.000.0	1,000	S-0.00		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version.
							<i>5</i> .					Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not supported for Display Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1	-	A ₇	A ₆	A5	A ₄	A3	A ₂	Aı	Ao	Trike Hegister for oder ib	A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	Ba	B ₄	B ₃	B ₂	Bı	Bo		Demodes A(7:0), I(7:0) can be stored in
0	1		C ₇	C ₆	Co	C ₄	C ₃	C ₂	C ₁	Co		Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1	- 1	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E4	Ea	E ₂	E ₁	Eo		
0	1	- 1	F ₇	Fe	Fo	F ₄	Fa	F ₂	F ₁	Fo		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		
0	1		H ₇	He	Hs	H ₄	Нз	H ₂	H1	Ho		
0	1		17	16	15	14	13	12	h	lo.		
0	1		J ₇	Js	J ₅	Ja	J ₃	J ₂	Ji	Jo		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	Ao		OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTL' follow the reference code sequences

	man D/C#			De	DE	D.4	D2	D0	D4	Do		December	10 ± ± ±	
	0.400	1000000		D6	D5	D4	D3	D2	D1	-	Command	Descript		
0	1	3C	0 A ₇	0 A ₆	1 As	1 A ₄	0	1 A ₂	0 A ₁	O Ao	Border Waveform Control	A[7:0] = 0	order waveform for VBD C0h [POR], set VBD as HIZ. Select VBD option	
												A[7:6		
												00	GS Transition.	
													Defined in A[2] and A[1:0]	
												01	Fix Level, Defined in A[5:4]	
												10	VCOM	
												11[PO	R] HiZ	
												A [5:4] F	ix Level Setting for VBD	
												00	VSS	
												01	VSH1	
												-	VSL	
												10		
												11	VSH2	
												VISI CO	Transition control	
												-	GS Transition control	
												A[2] 0	Follow LUT	
												0	(Output VCOM @ RED)	
												1	Follow LUT	
													T Ollow LOT	
												A [1:0] G	S Transition setting for VBD	
												A[1:0		
												00	LUTO	
												01	LUT1	
												10	LUT2	
												11	LUT3	
		-								-	-		1	
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option fo	or LUT end	
0	1		A ₇	As	As	A ₄	As	A ₂	At	Ao			2h [POR]	
				7.6		7 64	1.0	1.02	7.11				Normal.	
													Source output level keep	
			20.00									F	previous output before power	
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RA	AM Option	
0	1		0	0	0	0	0	0	0	Ao		A[0]= 0 [PORj	
													RAM corresponding to RAM RAM corresponding to RAM	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		he start/end positions of the	
0	1		0	0	A ₅	Aı	A ₃	A ₂	A ₁	Ao	Start / End position		address in the X direction by	
0	1		0	0	Bs	B ₄	B ₃	B ₂	Bı	Bo		address	unit for RAM	
-					0,	54	03	J2					SA[5:0], XStart, POR = 00h EA[5:0], XEnd, POR = 15h	
		45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify t	he start/end positions of the	
0	0	- 0000	Α.	As	As	Aı	A ₃	A ₂	Aı	Ao	Start / End position	window a	address in the Y direction by	
			64.7		6.40	7.14	-		-	-			window address in the Y direction by address unit for RAM	
0	1		A7		0	0	0	0	0	Δ.,			41113 (41 1.42 113)	
0	1		0	0	0	0	0	0	0	As				
0	1		-		0 B ₅	0 B ₄	0 B ₃	0 B ₂ 0	0 B ₁	B ₀		A[8:0]: Y	SA[8:0], YStart, POR = 000h EA[8:0], YEnd, POR = 127h	

-	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Committee of the Commit	30000	M for Rea	ular Patter
0	1	-,0	A ₇	A ₆	As	A ₄	0	A ₂	At	A ₀	Regular Pattern	A[7:0] = 0			alai i alloi
													1st step v		
													ep Height,		
												to Gate	ter RAM in	Y-direction	on accordi
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste Step of all	ep Width, ter RAM ir	POR= 000	
												to Source		10.01	Width
												A[2:0]	Width	A[2:0]	
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												BUSY pac operation.		ut high du	ring
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAI	M for Reg	ular Patter
0	1		A ₇	As	A ₅	Aı	0	A ₂	Aı	Ao	Regular Pattern	A[7:0] = 0			
				1.0	1.0	7.44				7.40		ST 2550	873 2		
) 1											A[6:4]: Ste	1st step va ep Height, ter RAM in	POR= 00	
												to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												27770000			
												010	32	110	200
												010 32 110 011 64 111 A[2:0]: Step Width, POR= 00	200 200		
												011 A[2:0]: Ste	64 ep Width, lter RAM in	111 POR= 000	200
												011 A[2:0]: Ste	64 ep Width, lter RAM in	111 POR= 000	200
												011 A[2:0]: Step of all to Source	64 ep Width, iter RAM in	POR= 000	200 on accordi
												O11 A[2:0]: Ste Step of all to Source A[2:0]	64 ep Width, l ter RAM ir Width	111 POR= 000 X-direction	200 on accordi
												A[2:0]: Ste Step of all to Source A[2:0] 000 001	ep Width, ter RAM ir Width 8	111 POR= 000 X-direction A[2:0] 100 101	200 on accordi Width 128 200
												011 A[2:0]: Ste Step of all to Source A[2:0] 000 001 010	ep Width, ter RAM ir Width 8 16 32	POR= 000 A X-direction A[2:0] 100 101 110	200 on accordi Width 128 200 200
												011 A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011	ep Width, ter RAM ir Width 8 16 32 64	111 POR= 000 X-direction A[2:0] 100 101 110	200 on accordi Width 128 200 200 200
	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	011 A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op	ep Width, ter RAM ir Width 8 16 32 64 eration, B	POR= 000 A X-direction A[2:0] 100 101 110 111 USY pad	200 On accordi Width 128 200 200 200 will output
-	0 1	4E	0 0	1 0	0 A ₅	0 A4	1 A ₃	1 A ₂	1 A ₁	0 Ao	Set RAM X address counter	A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op high.	ep Width, ter RAM in Width 8 16 32 64 eration, Be al settings in the address t	111 POR= 000 X-direction A[2:0] 100 101 110 111 USY pad	200 Width 128 200 200 200 will output
0	-	4E 4F	-	-		_	-	-	_	-		A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During ophigh. Make initiaddress ir A[5:0]: 00	ep Width, ter RAM ir Width 8 16 32 64 eration, Bin the addruh [POR].	POR= 000 X-direction A[2:0] 100 101 110 111 USY pad for the Ress counter	200 Width 128 200 200 200 will output AM X er (AC)
)	1		0	0	Aσ	A4	A ₃	A ₂	A ₁	Ao	counter	A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op high. Make initiaddress ir A[5:0]: 00	ep Width, ter RAM in Width 8 16 32 64 eration, Beattings in the address in the ad	POR= 000 A X-direction A[2:0] 100 101 110 111 USY pad for the Ress counter	200 Width 128 200 200 200 will output AM X er (AC)
)	0		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Set RAM Y address	A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During ophigh. Make initiaddress ir A[5:0]: 00	ep Width, ter RAM in Width 8 16 32 64 eration, Beattings in the address in the ad	POR= 000 A X-direction A[2:0] 100 101 110 111 USY pad for the Ress counter	200 Width 128 200 200 200 will output AM X er (AC)
0 0	0 1		0 0 A ₇	0 1 A ₆	0 A ₅	O A4	A ₃ 1 A ₃	A ₂	A ₁	1 A ₀	Set RAM Y address	A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op high. Make initiaddress ir A[5:0]: 00	ep Width, ter RAM in Width 8 16 32 64 eration, Beattings in the address in the ad	POR= 000 A X-direction A[2:0] 100 101 110 111 USY pad for the Ress counter	200 Width 128 200 200 200 will output AM X er (AC)

3. Environmental

3. 1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

3.2 Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T=40 °C , RH=35%RH, For 240hrs	IEC 60 068-2-2Bp	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T=70 °C , RH=35%RH, For 240 hrs Test in white pattern	IEC 60 068-2-2Bp	
4	Low-Temperature Storage	T = -25 °C, for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High Humidity Operation	T=40 °C, RH=80%RH, For 240hrs	IEC 60 068-2-3CA	
6	High Temperature, High Humidity Storage	T=50 °C, RH=80%RH, For 240hrs Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	-25 °C (30min)~70 °C (30min), 50 Cycle Test in white pattern	IEC 60 068-2-14NB	
8	Package Vibration	1.04G,Frequency: 10~500Hz Direction: X,Y,Z Duration:1hours in each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	IEC6 1000-4-2	

Actual EMC level to be measured on customer application.

Note1: The protective film must be removed before temperature test.

Note2: Stay white pattern for storage and non-operation test.

Note3: The function, appearence, opticals should meet the requirements of the test before and after the test.

Note4: Keep testing after 4 hours placing at 20°C-25°C.

4. Electrical Characteristics

4. 1 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V CI	Logic supply voltage	-0.5 to +4.0	V
T OPR	Operation temperature range	0~40	°C
T STG	Storage temperature range	-25~60	°C
-	Humidity range	45~65	%RH

^{*} Note: Avoid direct sunlight.

Table 4.1-1: Maximum Ratings

Note: Maximum ratings are those values beyond which damages to the device may occur.

Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Note 4.1-1:The recommended operating temperature should be kept below 40°C

Note 4.1-2: Tstg is the transportation condition, the transport time is within 10 days for -25 $^{\circ}$ C $^{\circ}$ C or 40 $^{\circ}$ C $^{\circ}$ C.

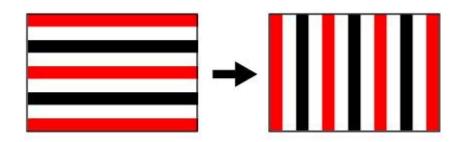
Note 4.1-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months.

4. 2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, TOPR=25°C.

Table 4.2-1: DC Characteristics

Symbol	Parameter	Test	Applicable	Min.	Тур.	Max.	Unit
		Condition	pin				
VCI	VCI operation voltage	-	VCI	2.2	3.0	3.7	V
VIH	High level input voltage	-	SDA, SCL, CS#,	0.8VDDIO	-	-	V
VIL	Low level input voltage	-	D/C#, RES#, BS1	-	-	0.2VDDIO	V
VOH	High level output voltage	IOH=-100uA	BUSY,	0.9VDDIO	-	-	V
VOL	Low level output voltage	IOL = 100uA	6031,		-	0.1VDDIO	V
lupdate	Module operating current	VCI=3.3V	-	-	2		mA



					1.341n	cn E-Paper	KBW
Isleep	Deep sleep mode	VCI=3.3V	-	-		5	uA

The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note4.2-1)

- The listed electrical/optical characteristics are only guaranteed under the controller& waveform provided by Seengreat.
 - Vcom value will be OTP before in factory or present on the label sticker.

Note 4.2-1 The Typical power consumption

4.3 Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.2V to 3.7V, TOPR=25°C

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

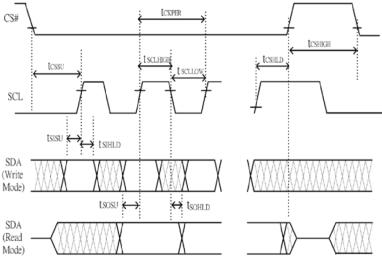


Figure 4.3-1: Serial peripheral interface characteristics

4.4 Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25°C	-	33	mAs	-
Deep sleep mode	-	25℃	-	3	uA	-

mAs=update average current×update time

4.5 MCU Interface

4.5-1 MCU interface selection

The 1.54inch e-Paper can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 4.5-1: MCU interface selection

BS1	MPU Interface						
L	4-lines serial peripheral interface (SPI)						
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI						

4.5-2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#,The control pins status in 4-wire SPI in writing command/data is shown in Table 4.5- 2 and the write procedure 4-wire SPI is shown in Figue 4.5-2.

Table 4.5-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

In the write mode, SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

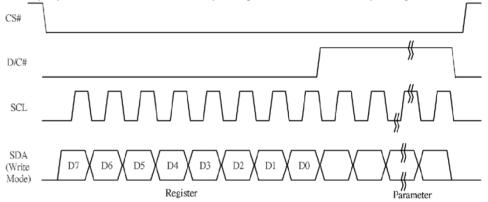


Figure 4.5-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ...D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

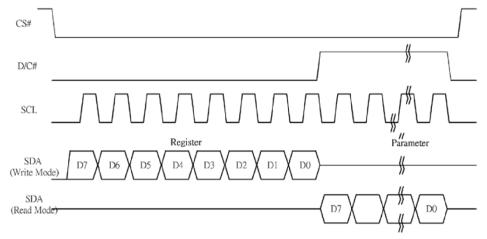


Figure 4.5-2: Read procedure in 4-wire SPI mode

4.5-3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 4.5-3

Table 4.5-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write	1	Command	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1)L is connected to VSS and H is connected to VDDIO
- (2)↑ stands for rising edge of signal

In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. shows the write procedure in 3-wire SPI

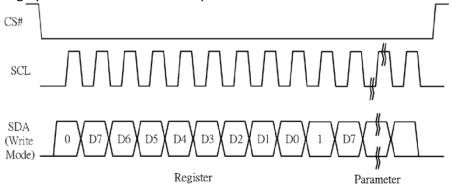


Figure 4.5-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C#=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C#=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation

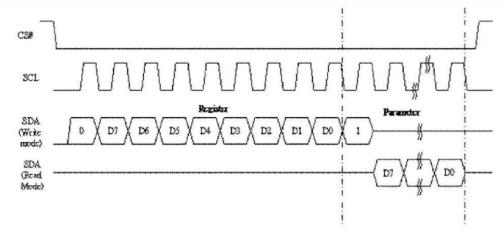
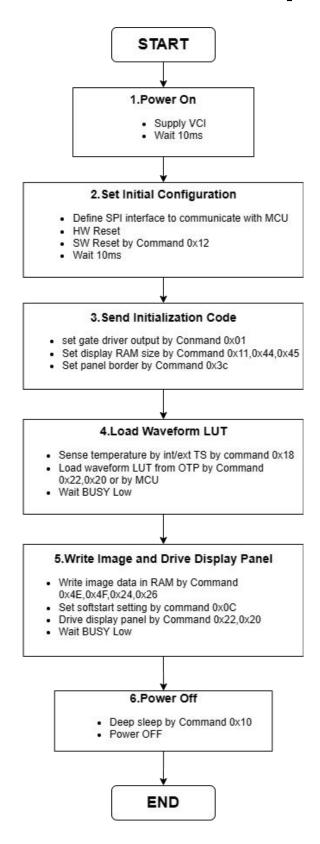



Figure 4.5-4: Read procedure in 3-wire SPI mode

5. Typical Operating Sequence

5.1 General operation flow to drive display panel

6. Optical characteristics

6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮРЕ	MAX	UNIT	Note
R	Reflectance	white	30	35	-	%	Note 6-1
Gn	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-		-
CR	Contrast Ratio	indoor	8:1	10	-	-	-
Panel's life	-	0°C∼40°C		5years	-	-	Note 6-2

m:2

WS : White state DS : Dark stat

Note 6-1: Luminance meter: Eye - One Pro Spectrophotometer

Note 6-2: We don't guarantee 5 years pixels display quality for humidity below 45%RH or above 65%RH; at least

update 1 time per day.

7. Point and line standard

Shipment Inspection Standard									
	Equipment: Electrical test fixture, Point gauge								
Outline dimension	37.32(H)×31.8(V) ×1.00(D)	Unit:mm	Part-A	Active area	Part-B	Border area			
	Temperature	Humidity	illuminance	Distance	Time	Angle			
Environment	21 ℃~ 25 ℃	55%±5%RH	1200 \sim 1500Lux	300 mm	35Sec				
Defet type	Inspection method	Standard		Part-A		Part-B			
		D≤0	25 mm	Ignore		Ignore			
Spot	Electric Display	0.25 mm <d≤0.4 mm<="" td=""><td colspan="2">N≤4</td><td>Ignore</td></d≤0.4>		N≤4		Ignore			
	•	D>0).4 mm	Not Alle	ow	Ignore			
Display unwork	Electric Display	Not A	Allow	Not Allow		Ignore			
Display error	Electric Display	Not Allow		Not Allow Not Allow		ow	Ignore		
Scratch or line		L≤1 mm, W≤0.1 mm		L≤1 mm, W≤0.1 mm Ignore		е	Ignore		
defect(include dirt)	Visual/Film card	-	.5mm,0.1< 2mm,	N≤2		Ignore			

1.54inch E-Paper RBW

1.5 Thier E Tuper RB W						
		L>2.5 mm, W>0.2 mm	Not Allow	Ignore		
		D≤0.2mm	Ignore	Ignore		
PS Bubble	Visual/Film card	0.2mm≤D≤0.35mm & N≤4	N≤4	Ignore		
		D>0.35 mm	Not Allow	Ignore		
		X≤5mm, Y≤0.5mm, Do not affect the electrode circuit				
		, Ignore				
Side Fragment	Visual/Film card		x y			

8. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.